
© 2026 Bloomberg Finance L.P. All rights reserved.

Crane Lowers Rocq Safely into C++

Rocq for Programming Languages 2026 (RocqPL 2026)

January 17, 2026

Matthew Z. Weaver

Joomy Korkut
@joomy @joomy@functional.cafejkorkut@bloomberg.net

mweaver89@bloomberg.net

Bugs are bad!

Testing is great, but not enough!

causes a data race because

different threads are writing to

the same common address!

Tests are weak at finding data

races and useless for proving

their absence; we need formal

methods to prove the absence

of data races!

• A new extraction system from Rocq to C++.

• Generates functional-style, memory-safe,

thread-safe, readable C++ code.

• Still under active development!

New Tool: Crane

• C++ is the primary programming language and the lingua franca of

our engineering teams, so, we are meeting them where they are!

— We strive to generate readable, verified C++ library files for engineers to

seamlessly integrate into production code.

• C++ has a decent functional subset, but it also provides enough

flexibility for low-level optimizations.

— We can treat it like a portable assembly language for functional language

compilers!

Why C++?

What does functional-style C++ look like?

Inductive list (A : Type) : Type :=

template <typename A> struct cons {
 A x;
 shared_ptr<list<A>> xs;
 static shared_ptr<list<A>>
 make(A x, shared_ptr<list<A>> xs) {
 return make_shared<list<A>>(cons<A>{x, xs});
 }
};

template <typename A> struct nil;

template <typename A> struct nil {
 static shared_ptr<list<A>> make() {
 return make_shared<list<A>>(nil<A>{});
 }
};

template <typename A> using list =
variant<nil<A>, cons<A>>;

| nil : list A
| cons : A -> list A -> list A.

template <typename A> struct cons;

What does functional-style C++ look like?

match l with

 end.

template <typename A, typename B, MapsTo<B, A> F>
shared_ptr<list>
map(F &&f, const shared_ptr<list<A>> l) {

}

Fixpoint map {A B : Type}
 (f : A -> B)
 (l : list A) : list B :=

| nil => nil
| cons x l' => cons (f x) (map f l')

return visit(Overloaded {

 },
 *l);

[&](const nil<A> _args) -> shared_ptr<list> {
 return nil::make();
 },

[&](const cons<A> _args) -> shared_ptr<list> {
 return cons::make(
 f(_args.x),
 map<A, B, F>(f, _args.xs));
 }

• As with OCaml extraction, Crane allows users to customize how specific

definitions are translated by extraction.

Customizing Extraction

Crane Extract Inlined Constant cat =>
 "%a0 + %a1" From "string".

Crane Extract Inductive bool =>
 "bool"
 ["true" "false"]
 "if (%scrut) { %br0 } else { %br1 }".

first argument

second argument

import

type name

constructor

names

scrutinee first branch second branch

• Rocq is a pure functional language:

no IO, no state, no concurrency, just functions manipulating values.

• But… pure functional languages can represent effectful computation

using monads!

• We created an abstract interface for users to specify both

- the functional interface for monadic effects,

- and how they should extract to C++.

• We choose to derive our monads from interaction trees.

Monadic Effects!

Monadic Effects!

Inductive iIO (A : Type) : Type :=
| iprint : string -> iIO unit
...

Definition IO : Type -> Type := itree iIO.
Definition print (s : string) : IO unit := trigger (iprint s).
...

We define a type family containing the

operations of our monad.

We then derive the monadic interface

using itrees.

Monadic Effects!

Crane Extract Monad IO [bind := bind, ret := Ret].
Crane Extract Inlined Constant print => "std::cout << %a0".
...

Definition io_test (s : string) : IO unit :=
print (cat "printing " s) ;;
Ret tt.

void io_test(const std::string s) {
 std::cout << "printing " + s;
 return;

}

We declare our type a monad to Crane...

...and specify how each operations

should be extracted.

We now can write effectful programs...

...and extract them to C++!

Why is concurrency hard?

Uncontrolled:
Multiple threads use the same memory location at the same time ➛ possible data race!

Locks:
Multiple threads lock memory locations before use, and unlock after use, so no data race ,

but they keep threads waiting , can deadlock (and wait forever), and don't compose!

Software transactional memory:
Multiple threads perform operations optimistically, check if there's a change before committing

No data race, composable, no deadlocks, no waiting

May repeat expensive computation, limits side effects in atomic blocks

Concurrent Hash Table in Rocq with Crane

1. Implemented STM as a C++ library.

2. Defined and connected the STM interface as a monad in Crane.

3. Implemented hash table in Rocq.

4. Extracted to C++ with Crane.

• We are hoping to verify the C++ STM library and

provide a proof interface for concurrent programs using STM.

What do we mean by “safely”?

• Our extractor is not verified; therefore, our approach can be considered

lightweight formal methods.

• We are developing a differential testing framework to compare outputs of

randomly generated Rocq programs compiled with Crane and other

compilers and extractors (e.g. CertiCoq, extraction to Malfunction, etc.).

• Generated code will also undergo the same extensive testing and static

analysis all handwritten code at Bloomberg is subject to.

Future Work

• While the basics are (nearly) up and running, we have so much more to do,

including (but not limited to):

— Support more of Rocq's language features (more complex inductive types, coinductives,

parameterized modules, type classes, etc.)

— Improve the efficiency of generated code without sacrificing readability too much (our

plan: CPS + defunctionalization)

— Goal: extract C++ code that runs faster than extracted OCaml code!

— Get Crane-generated code into production!

• Crane is a new extraction system from Rocq to C++,

that generates functional-style, memory-safe,

thread-safe, readable C++ code.

• It is not verified, but we have other lightweight formal

methods to ensure the safety of the generated code.

• Using Crane, we are implementing verified C++ libraries

such as concurrent hash tables, that will eventually be

used by Bloomberg engineers.

Summary

© 2026 Bloomberg Finance L.P. All rights reserved.

Thank you! Check out our project at:

https://bloomberg.github.io/crane

https:///
https://github.com/bloomberg/crane

	Slide 1: Crane Lowers Rocq Safely into C++
	Slide 2: Bugs are bad!
	Slide 3: Testing is great, but not enough!
	Slide 4: New Tool: Crane
	Slide 5: Why C++?
	Slide 6: What does functional-style C++ look like?
	Slide 7: What does functional-style C++ look like?
	Slide 8: Customizing Extraction
	Slide 9: Monadic Effects!
	Slide 10: Monadic Effects!
	Slide 11: Monadic Effects!
	Slide 12: Why is concurrency hard?
	Slide 13: Concurrent Hash Table in Rocq with Crane
	Slide 14: What do we mean by “safely”?
	Slide 15: Future Work
	Slide 16: Summary
	Slide 17: Thank you!

