Crane Lowers Rocq Safely into C++

Rocq for Programming Languages 2026 (RocqPL 2026)
January 17, 2026

Matthew Z. Weaver

| . 9 mweaver89@bloomberg.net

o
O
O
3
3
@
Q

“"Joomy Korkut
DA jkorkut@bloomberg.net W @joomy @ @joomy@fu

e Ry

At T MR AT, TR IV Y RIITN s oL PR T METY
BT B el T T A TR N N O P _4;-_-3\‘,ﬁ P AN s
FR T L A e R R AT N E '-'.‘,i-"l#&?.&‘.. O T
EPE SO S A A S g ay "ptNad kY LRI IO 5 St 0 223 Sy ’-,{'» 28 5 %
o DoaE e T S LA e Aty St L R RS R
TS DI AR I R Py ST g 3 W e B TG e i TS
SRR B SR N . DO or 3 e i Ity - A0y . ‘. ‘:17 SOV “v y, v
',) _)_1“..-:., T T ER ’ (‘4 LA | sy X:g& Y .,1,' fied
) . e e . - -3 S ™ 7, : > T
:A"-._:’_‘.r s o e o - i . > @ a./,‘q.‘n,\«% o £
ettt . . .) ’ R 3 eI e"v‘ 3
Ve Yt SRR P R \3’55’&- N
PR ‘. C LT R IR
.+ “TechAtBloomberg.com RIS e, - TR
. ‘2 R RN ﬁaa S
’ od . e e ""ﬂﬁ \b
e . '.. ~ >
.-.'t -~

© 2026 Bloomberg Finance L.P. All rights reserved.

Bugs are bad!

Testing is great, but not enough!

Tests are weak at finding data

v -3+ 11 EEEE groups/bs1/bslstl/bslst1_hashtable.h L',j races and useless fOf' provmg
their absence; we need formal
4420 4420 tertlplate <class KEY_CONFIG, class HASHER, class COMPARATOR, class ALLOCATOR> methOdS tO prOVG the absence
4421 4421 void
4422 4422 HashTable<KEY_CONFIG, HASHER, COMPARATOR, ALLOCATOR>::removeAll() Of data raceS!
4423 4423 { L
4424 4424 this->removeAllImp();
4425 - native_std: :memset(
4426 - d_anchor.bucketArrayAddress()]; » causes a data race because
4427 - % _ different threads are writing to
4428 - sizeof(bslalg::HashTableBucket) * d_anchor.bucketArraySize());
4425 4+ if (HashTable_ImpDetails::defaultBucketAddress() != the same common address!
4426 + d_anchor.bucketArrayAddress()) {
4427 + native_std::memset(d_anchor.bucketArrayAddress(),
4428 + Q,
4429 + sizeof(bslalg::HashTableBucket)
4430 + d_anchor.bucketArraySize());
4431 + }
4429 4432
4430 4433 d_anchor.setListRootAddress(0);
4431 4434 d_size = 0;
4432 4435 }

New Tool: Crane

* A new extraction system from Rocq to C++.

Generates functional-style, memory-safe,
thread-safe, readable C++ code.

Still under active development!

Why C++7?

« C++is the primary programming language and the lingua franca of
our engineering teams, so, we are meeting them where they are!

— We strive to generate readable, verified C++ library files for engineers to
seamlessly integrate into production code.

« C++ has a decent functional subset, but it also provides enough
flexibility for low-level optimizations.

— We can treat it like a portable assembly language for functional language
compilers!

What does functional-style C++ look like?

Inductive list (A : Type) : Type := template <typename A> struct nil;
| nil : list A template <typename A> struct cons;
| cons : A -> list A -> list A. template <typename A> using list =

variant<nil<A>, cons<A>>;

template <typename A> struct nil {
static shared_ptr<list<A>> make() {
return make_shared<list<A>>(nil<A>{});

}
|5

template <typename A> struct cons {
A X;
shared_ptr<list<A>> xs;
static shared_ptr<list<A>>
make(A x, shared_ptr<list<A>> xs) {
return make_shared<list<A>>(cons<A>{x, xs});

}
I

What does functional-style C++ look like?

Fixpoint map {A B : Type} template <typename A, typename B, MapsTo<B, A> F>
(f: A->B) shared_ptr<list>
(:1list A) : list B := map(F &&f, const shared_ptr<list<A>> [) {
match | with return visit(Overloaded {
| nil => nil [&](const nil<A> _args) -> shared_ptr<list> {
| cons x I' => cons (f x) (map fI') return nil::make();
end. 1,

[&](const cons<A> _args) -> shared_ptr<list> {
return cons::make(
f(_args.x),
map<A, B, F>(f, _args.xs));
i2
*1);
}

Customizing Extraction

« As with OCaml extraction, Crane allows users to customize how specific
definitions are translated by extraction.

Crane Extract Inlined Constant cat =>

"%a0 + %al" From "string".

£ \

type name
\Crane Extract Inductive bool =>
"bool"
constructor | . ,
["true" "false"]
names

"if (%scrut) { %br0 } else { %br1 }".

first argument

import

second argument

A B

scrutinee first branch second branch

Monadic Effects!

Rocq is a pure functional language:
no 10, no state, no concurrency, just functions manipulating values.

But... pure functional languages can represent effectful computation
using monads!

We created an abstract interface for users to specify both
- the functional interface for monadic effects,
- and how they should extract to C++.

We choose to derive our monads from interaction trees.

Monadic Effects!

Inductive ilO (A : Type) : Type :=

o , , _ We define a type family containing the
| iprint : string -> ilO unit

operations of our monad.

Definition 10 : Type -> Type :=itree ilO.
Definition print (s : string) : 1O unit := trigger (iprint s).

We then derive the monadic interface
using itrees.

Monadic Effects!

[We declare our type a monad to Crane...]

Crane Extract Monad |0 [bind := bind, ret := Ret].
Crane Extract Inlined Constant print => "std::cout << %a0".

...and specify how each operations
should be extracted.

Definition io_test (s : string) : 10 unit :=
print (cat "printing " s) ;; [

Ret tt. We now can write effectful programs...]

void io_test(const std::string s) {
std::cout << "printing " + s; [...and extract them to C++!]

return;

Why is concurrency hard?

Uncontrolled:
Multiple threads use the same memory location at the same time > possible data race! ¢/

Locks:
Multiple threads lock memory locations before use, and unlock after use, so no data race b,
but they keep threads waiting &, can deadlock (% (and wait forever), and don't compose!

Software transactional memory:
Multiple threads perform operations optimistically, check if there's a change before committing
No data race, composable, no deadlocks, no waiting &

, in atomic blocks

Concurrent Hash Table in Rocq with Crane

Implemented STM as a C++ library.
Defined and connected the STM interface as a monad in Crane.

Implemented hash table in Rocq.
Extracted to C++ with Crane.

P~ Wb =

* We are hoping to verify the C++ STM library and
provide a proof interface for concurrent programs using STM.

What do we mean by “safely”?

* Our extractor is not verified; therefore, our approach can be considered

« We are developing a differential testing framework to compare outputs of
randomly generated Rocq programs compiled with Crane and other
compilers and extractors (e.g. CertiCoq, extraction to Malfunction, etc.).

« Generated code will also undergo the same extensive testing and static
analysis all handwritten code at Bloomberg is subject to.

Future Work

* While the basics are (nearly) up and running, we have so much more to do,
including (but not limited to):

— Support more of Rocq's language features (more complex inductive types, coinductives,
parameterized modules, type classes, etc.)

— Improve the efficiency of generated code without sacrificing readability too much (our
plan: CPS + defunctionalization)

— Goal: extract C++ code that runs faster than extracted OCaml code!

— Get Crane-generated code into production!

Summary

« Crane is a new extraction system from Rocq to C++,
that generates functional-style, memory-safe,
thread-safe, readable C++ code.

* It is not verified, but we have other lightweight formal
methods to ensure the safety of the generated code.

« Using Crane, we are implementing verified C++ libraries
such as concurrent hash tables, that will eventually be
used by Bloomberg engineers.

T h a n k yo u ! Check out our project at:

https://bloomberg.qgithub.io/crane

bioquoo|g

- . . .
(-/ .'.' LA : v N e » San v c T3 Yo %o ")‘) . Yt .
. et v, 3 . e 4 . 3 5 RS ¥ ol
- wmelte 2. 0 , : £ e 3 1 OB SO T . o . " . *
+ ¥ oesusy ST 2 <bigy g . . . DR e S
At L/ -

LAY - | K .

SRR o b

: b
.

R

ST 58
3 3

v 5

© 2026 Bloomberg Finance L.P. All rights reserved.

https:///
https://github.com/bloomberg/crane

	Slide 1: Crane Lowers Rocq Safely into C++
	Slide 2: Bugs are bad!
	Slide 3: Testing is great, but not enough!
	Slide 4: New Tool: Crane
	Slide 5: Why C++?
	Slide 6: What does functional-style C++ look like?
	Slide 7: What does functional-style C++ look like?
	Slide 8: Customizing Extraction
	Slide 9: Monadic Effects!
	Slide 10: Monadic Effects!
	Slide 11: Monadic Effects!
	Slide 12: Why is concurrency hard?
	Slide 13: Concurrent Hash Table in Rocq with Crane
	Slide 14: What do we mean by “safely”?
	Slide 15: Future Work
	Slide 16: Summary
	Slide 17: Thank you!

