A Model of Type Theory with Directed Univalence in Bicubical Sets

Matthew Weaver and Dan Licata

Princeton University Wesleyan University

HoTT. August 14, 2019

- Riehl-Shulman defines a type theory for ∞-categories with a model bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types
 - ∞-categories (Segal types) and univalent ∞-category (Rezk types) given internally as predicates on types
 - Predicate isCov(B : A → U) for covariant discrete fibrations
 - 5. Cavallo, Riehl and Sattler have also (externally) defined the universe of covariant fibrations (the ∞-category of spaces and continuous functions) and shown Directed Univalence: Hom_{UCov} A B ≃ A → B

Constructive(?) Directed Type Theory

- Can we make this constructive?
 - 1. Begin with Cubical Type Theory
 - 2. Use a second cubical interval to define Hom-types
 - 3. Use LOPS to define universe of covariant fibrations and construct directed univalence internally...
 - ...unfortunately, directed univalence is a bit trickier than expected

Let's see how far the techniques from cubical type theory get us!

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

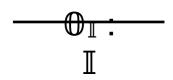
- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

2. Add an interval: I

$${\mathbb I}$$
 : Type



Directed Type Theory

2. Add an interval: 2

$$\frac{x:2 \quad y:2}{x \land y:2}$$

and equations...

i.e. generators for the Cartesian cubes

i.e. generators for the Dedekind cubes

The Directed Interval

- Why Dedekind cubes instead of Cartesian?
 x ≤ y := x = x ∧ y
- We also add the following axioms:
 - $p : \mathbb{I} \to \mathbb{Z}$ is constant $(\Pi \times y : \mathbb{I}, p \times p \times p)$
 - p:2 \rightarrow 2 is monotone (Π x y:2, if x \leq y then p x \leq p y)

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for ${\mathbb I}$
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

3. Specify gen. cofibrations for ${\mathbb I}$

isCof :
$$\Omega \to \Omega$$

Cof := $\Sigma \varphi : \Omega$. isCof φ

Cof closed under $_\land_$, $_\lor_$, \bot , \top

$$\frac{x : \mathbb{I} \quad y : \mathbb{I}}{_ : isCof (x = y)}$$

$$φ : I → Cof$$
_ : isCof (Π x : I . φ x)

Directed Type Theory

3. Specify gen. cofibrations for 2

$$x: 2 y: 2$$

_: isCof (x = y)

$$\begin{array}{c} \phi: 2 \rightarrow Cof \\ \underline{\quad : isCof (\Pi \ x : 2 . \phi \ x)} \end{array}$$

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

4. Define filling problem for Kan fibrations

hasCom :
$$(\mathbb{I} \to \mathbb{U}) \to \mathbb{U}$$

hasCom A = Π i j : \mathbb{I} .
 Π a : Cof .
 Π t : $(\Pi$ x : \mathbb{I} . $\alpha \to A$ x)
 Π b : $(A$ i)[$\alpha \mapsto t$ i] .
 $(A$ j)[$\alpha \mapsto t$ j; i = j \mapsto b]

relCom : (A : U)
$$\rightarrow$$
 (A \rightarrow U) \rightarrow U
relCom A B = Π p : \mathbb{I} \rightarrow A .
hasCom (B $_{\circ}$ p)

Directed Type Theory

4. Define filling problem for covariant fibrations

hasCov:
$$(2 \rightarrow U) \rightarrow U$$

hasCov A = $\Pi \alpha$: Cof.
 Πt : $(\Pi x : 2 . \alpha \rightarrow A x)$
 Πb : $(A \mathbb{O}_2)[\alpha \mapsto t \mathbb{O}_2]$.
 $(A \mathbb{1}_2)[\alpha \mapsto t \mathbb{1}_2]$

relCov : (A : U)
$$\rightarrow$$
 (A \rightarrow U) \rightarrow U
relCov A B = Π p : $2 \rightarrow$ A .
hasCov (B $_{\circ}$ p)

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

5. Define universe of Kan fibrations

 U_{Kan} given by LOPS construction for relCom **Directed Type Theory**

5. Define universe of covariant fibrations

 U_{Cov} given by LOPS construction for relCov.
 Lemma: relCov is in UKan

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory

(in the style of Orton-Pitts)

- 1. Begin with MLTT
- 2. Add an interval: I
- 3. Specify gen. cofibrations for I
- 4. Define filling problem for Kan fibrations
- 5. Define universe of Kan fibrations
- 6. Construct univalence

- 1. Begin with Cubical Type Theory
- 2. Add an interval: 2
- 3. Specify gen. cofibrations for 2
- 4. Define filling problem for covariant fibrations
- 5. Define universe of covariant fibrations
- 6. Construct directed univalence

Cubical Type Theory
(in the style of Orton-Pitts)

Directed Type Theory

6. Construct univalence

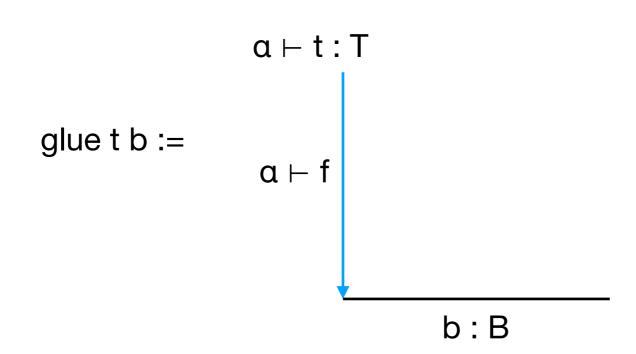
6. Construct directed univalence

 Key Idea: Glue type to attach equivalences to path structure Key Idea: Glue type to attach functions to morphism structure

Glue Types

Glue [
$$\alpha \mapsto (T, f)$$
] B := $\alpha \vdash f$

 $\alpha \vdash Glue [\alpha \mapsto (T, f)]B \equiv T$



g: Glue [
$$a \mapsto (T, f)$$
] B

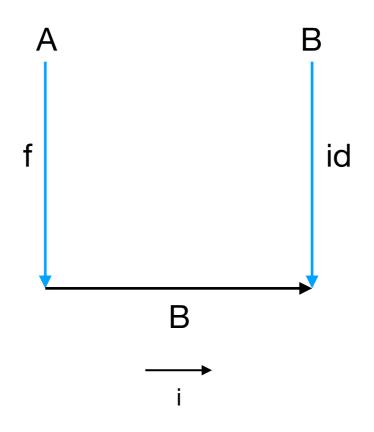
unglue g: B

 $a \vdash glue t b \equiv t$
 $a \vdash unglue (glue t b) \equiv f t$

glue g (unglue g) $\equiv g$

Defining Directed Univalence

```
dua i A B f := Glue [ i = 0 \mapsto (A, f : A \rightarrow B)
, i = 1 \mapsto (B, id) ] B : Hom<sub>U</sub> A B
```

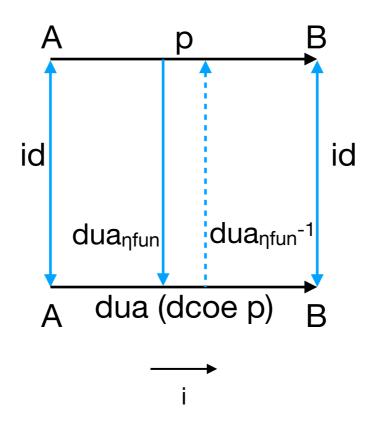


Naive Directed Univalence

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe : (Hom A B) \rightarrow (A \rightarrow B)
 - dua : $(A \rightarrow B) \rightarrow Hom A B$
 - dua_β: Π f: A → B. Path f (dcoe (dua f))
 - dua_{ηfun}: Π p: Hom A B. Π i: 2. p i → (dua (dcoe p)) i

Naive Directed Univalence

We're thus left with the following picture:



- To complete directed univalence, we need dua_{ηfun}-1
- Agda: https://github.com/dlicata335/cart-cube

What next?

- Cavallo, Riehl and Sattler's proof of directed univalence contains the precise lemma we need to finish.
- New goal: use any techniques available to confirm directed univalence holds at all in a cubical setting.
- Note: We would love any/all feedback on the math that follows.

What next?

- The proof in the bisimplicial model relies on simplices being a Reedy category
 - specifically: weak equivalences in the model are levelwise weak equivalences of simplicial sets
- Dedekind cubes are not Reedy...

Our New Goal

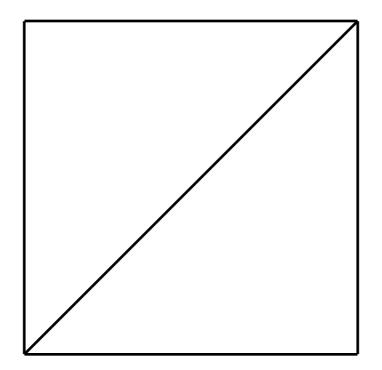
- Find a setting that...
 - 1. is cubical set valued presheaves of a Reedy category
 - 2. interprets the axioms from our internal language
 - 3. allows for the LOPS construction of universes
 - tiny interval

What are Reedy Categories?

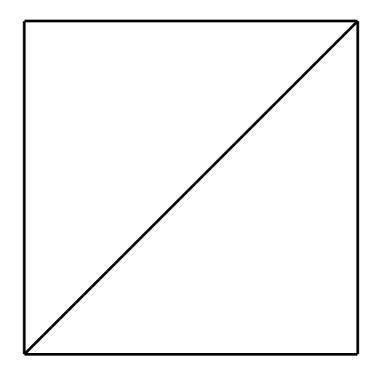
- The Idea: Categories permitting inductive constructions of presheaves and their morphisms (akin to cell complexes)
- (informal/incomplete) Definition: A generalized Reedy category is a category C along with a degree function
 δ : ob C → N such that every morphism (that isn't an iso) factors through an object of strictly smaller degree

- Free Cartesian category on an interval generated by:
 - face maps (+)
 - diagonals (+)
 - degeneracies (-)
 - connections (-)

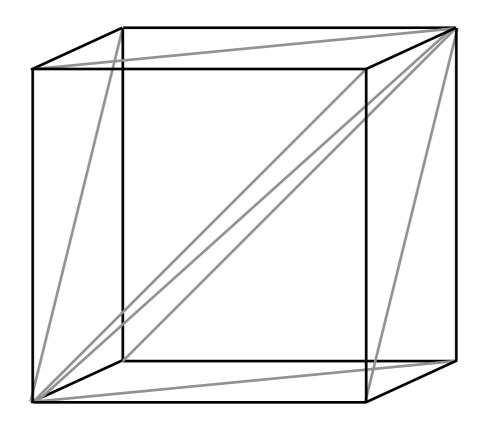
$$(x, y) \mapsto (x, y, y) \mapsto (x \land y, y)$$



$$(x, y) \mapsto (x, y, y) \mapsto (x \land y, y)$$

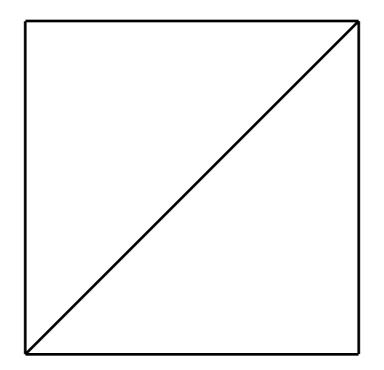


$$(x, y) \mapsto (x, y, y) \mapsto (x \land y, y)$$



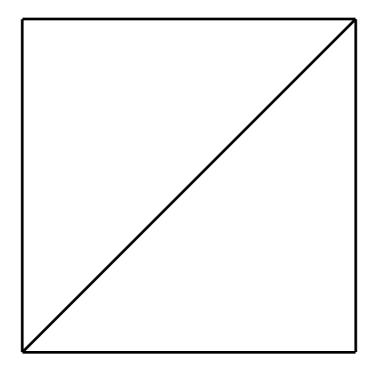
up by a diagonal

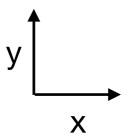
$$(x, y) \mapsto (x, y, y) \mapsto (x \land y, y)$$



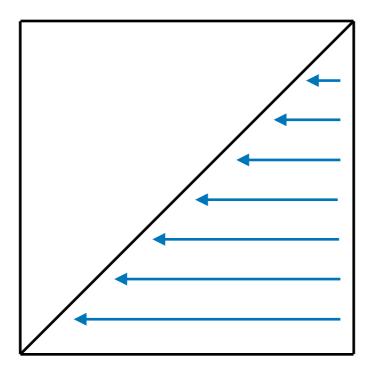
down by a connection

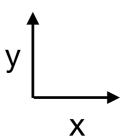
$$(x, y) \mapsto (x \land y, y)$$



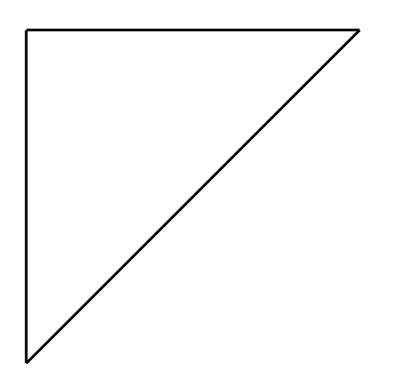


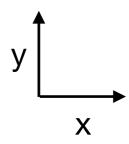
$$(x, y) \mapsto (x \land y, y)$$



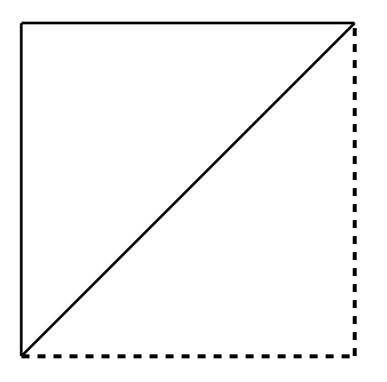


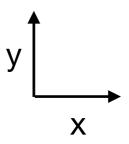
$$(x, y) \mapsto (x \land y, y)$$



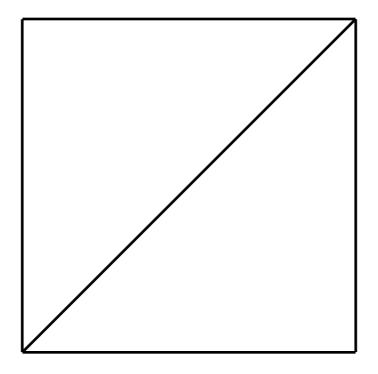


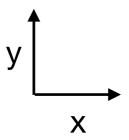
$$(x, y) \mapsto (x \land y, y)$$





$$(x, y) \mapsto (x \land y, y)$$





The Image Closure

- The Idea: formally add image objects for every morphism
- The Construction: Given a small Category C, the *image* closure Im(C) is the full subcategory of [Cop, Set] containing, for each morphism f in C, the coimage of f.
- Useful Lemma: We can build a topology J_{im} (the *image* covering) on Im(C) such that [Cop, Set] ≅ Sh(Im(C), J_{im}).
 - Inspired by Kapulkin and Voevodsky
 - The Comparison Lemma: [SGA 4, The Elephant]

The Prism Category

- Definition: The prism category is the image closure of the Dedekind cube category.
- Lemma (with Christian Sattler): The prism category is equivalent to the full subcategory of simplicial sets containing subobjects of the Dedekind cubes (Γ, φ) generated by the following formulae:
 - ⊤:true
 - x ≤ y : the equalizer of the degeneracy map x and connection x ∧ y
 - $\phi \wedge \psi$: the pullback of the subobjects (Γ , ϕ) and (Γ , ψ)
 - $\phi \lor \psi$: the pushout of the pullback for $(\Gamma, \phi \land \psi)$

The Prism Category

- The Prism category
 - is a finite product category...
 - ...and thus the Yoneda embedding of its interval is tiny...

Prisms are Reedy

- Theorem: The prism category is a generalized Reedy category.
 - The down maps are those that are regular epis in the presheaf category
 - The up maps are the monos
 - The Reedy factorization is the image factorization
- Corollary: The opposite of the prism category is also generalized Reedy
- Question: For which categories C is Im(C) Reedy?

Model Category One: Prismatic Cubical Sets

- Reedy model structure on [Prismop, [Cubeop, Set]], starting with model structure on Cartesian cubes [Sattler, Awodey]
- The lemma missing from the bicubical internal language now is provable in the same way as in bisimplicial sets.
- As our internal language axioms interpret into this model, we get a model with directed univalence!
- Can we make this even more cubical?

Model Category Two: Bicubical Sets

- Sheafification gives us an adjunction between prismatic cubical sets and bicubical sets
- We can transfer the model structure along the adjunction to bicubical sets
 - Left Induced Model Structure: [Hess-Kedziorek-Riehl-Shipley, Garner-Kedziorek-Riehl]
 - Path Object Argument: [Quillen]
- Our internal language axioms still interpret after the transfer
- The lemma that finished directed univalence is still true after the transfer